The Application of Novel Technology in Cultural Heritage Graph Theory, Combinatorics and Algorithms The Application of Novel Technology in Cultural Heritage Graph Theory, Combinatorics and Algorithms Weekly CRI Seminar The Application of Novel Technology in Cultural Heritage Graph Theory, Combinatorics and Algorithms

 

Optimal Neural Codes for Estimation and Control 

Ron Meir

 

Abstract

Optimal neural codes have been widely studied in the field of neuroscience in the context of perception, suggesting explanations of encoding in terms of optimal signal representation. However, in general settings perception subserves action selection leading to behavior through the perception-action loop. Motivated by recent results from motor control, we argue that encoding strategies should depend on the task for which they are being used. Given the different requirements of purely perceptual (e.g., object classification) and action-oriented (e.g., object manipulation) tasks, it is expected that sensory adaptation should differ within these domains. We show, based on principles of optimal estimation and control, that sensory adaptation for control differs from sensory adaptation for perception, even for simple setups. This implies, consistently with experiments, that when studying sensory adaptation, it is essential to account for the underlying task. In a broader setting, top-down effects, task-dependent and otherwise, have been shown experimentally to contribute to early sensory processing, thereby inspiring the development of a theoretical framework for such phenomena.